Chapter 14

The History of Life, continued

Reinforcement and Study Guide

Section 14.2 The Origin of Life

In your textbook, read about origins: the early ideas.

Use each of the terms below just once to complete the passage.

microorganisms	vital force	Louis Pasteur	biogenesis
nonliving matter	S-shaped	disproved	Francesco Redi
organisms	broth	microscope	spontaneous generation
spontaneously	air		
Early scientists believe	d that life arose	from (1)	through a process they called
(2)	In 10	668, the Italian physic	cian (3) conducted
an experiment with flies th	at (4)	this id	ea. At about the same time, biologists
began to use an important	new research to	ool, the (5)	They soon discovered the
vast world of (6)	·	The number and div	ersity of these organisms was so great that
scientists were led to believ	e once again the	at these organisms mu	st have arisen (7)
By the mid-1800s, however	r, (8)	was ab	le to disprove this hypothesis once and for
all. He set up an experimen	nt, using flasks v	with unique (9)	necks. These flasks
allowed (10)	, but	no organisms, to con	ne into contact with a broth containing
nutrients. If some (11)		existed, as had b	peen suggested, it would be able to get into
the (12)	through	the open neck of the	flask. His experiment proved that organ-
isms arise only from other	(13)	This i	dea, called (14) ,
is one of the cornerstones	of biology today	7.	
Determine if the stateme	ent is true. If it	t is not, rewrite the	italicized part to make it true.
15. Biogenesis <i>explains</i> ho	w life began on	Earth.	•
16. For life to begin, simpl	e <i>inorganic</i> molec	cules had to be formed	and then organized into complex molecules.
17. Several billion years a	go, Earth's atmo	osphere had no free <i>m</i>	ethane.

Chapter 14

The History of Life, continued

Reinforcement and Study Guide

Section 14.2 The Origin of Life, continued

	Primitive Earth's atmosphere may have been composed of water vapor, hydrogen, methane, and ammonia.
19.	In the early 1900s, Alexander Oparin proposed a widely accepted hypothesis that life began on land.
	Pasteur hypothesized that many chemical reactions occurring in the atmosphere resulted in the formation of a primordial soup.
	In 1953, Miller and Urey tested Oparin's hypothesis by simulating the conditions of <i>modern</i> Earth in the laboratory.
	Miller and Urey showed that organic compounds, including <i>nucleic acids</i> and sugars, could be formed in the laboratory, just as had been predicted.
	This "life-in-a-test-tube" experiment of Miller and Urey provides support for some modern hypotheses of <i>biogenesis</i> .
	Sidney Fox took Miller and Urey's experiment further and showed how amino acids could cluster to form <i>protocells</i> .
n y	our textbook, read about the evolution of cells.
	wer the following questions. Describe the likely characteristics of the first organisms on Earth.
26.	What is an autotroph? What factors helped them thrive on Earth?
!7.	What present-day organisms may be similar to the first autotrophs? Why?
28.	What change occurred in Earth's atmosphere after the evolution of photosynthesizing prokaryotes? Why?