Unit 2 – Biochemistry – The Four Organic Macromolecules

 Macro 		omolecules () are made of	(al	(aka subunits).	
	Your	body needs these molecules to perform function	ns. Your source of	these is the	
	food you eat. It is possible to use chemistry to perform to				
	see if	these macromolecules are found in a sample.			
				.	
Α.	Carb	oohydrates	Figure 2.1a	http://2.bp.blogspot.com/_2As3LXb0OwE/TKpF1RkDDI/AAAAAAAAWUOuu Vgzr5q0bs160011eb23.gd	
•	Carbo	hydrates are made of atoms of	сн ₂ он	сн ₂ он	
•	arranged into a polygon monomer called				
	anan	ged into a polygon monomer called	но Тран		
	<u> </u>	[.]	monosaccharide (glucose)		
	_	Examples of small carbo are		disaccharide (sucrose)	
	-		сн₂он сн Цо Ц	20н сн20н сн20н	
		These are sources	- , Дон Д Дон	Г Х Дон Х Дон Х	
		of for your cells.	га үшү күү		
	-	Examples of large carbs are	polysaccharide (amylose starc	h)	
	-	These are larger operative sources because they are			
		I nese are longer ener	gy sources becau	se they are	
		bigger polymers.			
	•	Plants have a special carb called	This big c	arb provides	
			······································		
■is a d		is a chemical that indicate	es if	is present	
		by turning from	_ when bolled.		
	-	indicates if	is present	by turning	
			·• p. •• out	,	
		from yellow/orange to blue/black.			

<u>Summary:</u>

B. Lipids

Lipids are made of atoms of ______ arranged into a monomer called a _____. Lipids have long tails called fatty acids. These can be saturated or unsaturated.

- fatty acids form kinks and are at room temperature like plant oils.
- fatty acids form NO kinks and
- are _____at room temperature like animal fats.
- Lipids are important sources of ______.

They are also stored by animals and be used as

The most important type of lipid is a ______. Phospholipids have a unique shape that _____

____ around the outside of every cell !!!

Summary:

The indicator test for lipids is a __. The lipids get absorbed and leave a transparent spot.

C. Nucleic Acids

Nucleic acids are made of atoms of ______arranged into a 3- part

monomer called a ______. Nucleotides come in five different types and

information is stored based on their sequence/order.

Summary:

D. Proteins

Proteins are made of atoms of ______ arranged into a monomer called

an _____. Amino acids come in 20 different types and MUST go

in the right order to form the right shaped protein. FORM fits FUNCTION.

- A protein's shape is important to the job it performs. There are 6 important jobs.
 - builds parts like hair, nails, muscle
 - between cells and animals like the hormone insulin
 - prevent illness like antibodies
 Figure 2.1f
 - absorbs light like melanin and chlorophyll
 - _____ molecules like hemoglobin in your blood
 - speed up chemical reactions like

catalase that breaks down hydrogen peroxide

- _____ is an indicator of proteins it turns from ______
- These four macromolecules are found in EVERY living thing on Earth. Cells make and break down these molecules as part of the cell's regulation and homeostasis needed for survival.

http://leavingbio.net/ENZYMES_files/image009

Active site

Substrate

E. Enzymes

Figure 2.1h	on rate of enzymes is highest in the optimum conditions of each unit		
http://a.files.bbci.co.uk/bam/liv e/content/zn9r87h/large	of rate of enzymes is highest in the optimum conditions of each unique		
organism (thermal vent bacteria, penguins, cacti).			

_____ can cause the enzymes to denature which ______.

Organisms and their cells have mechanisms to help minimize changes in

temperature, pH and salinity (to maintain homeostasis).

- •
- pH is a scale to measure if a solution is an acid or a base. The value of 7 is

_____; below 7 are called _____; above 7 are called _____.

 Buffers can respond to changes in pH to help maintain homeostasis to prevent enzymes from becoming denatured.

http://scconline.stonechild.edu/course/view.php ?id=27&week=10