Unit 2 - Biochemistry - The Four Organic Macromolecules

- Macromolecules (\qquad) are made of \qquad (aka subunits). Your body needs these molecules to perform functions. Your source of these is the food you eat. It is possible to use chemistry to perform \qquad to see if these macromolecules are found in a sample.

A. Carbohydrates

- Carbohydrates are made of atoms of \qquad arranged into a polygon monomer called
\qquad -.

Figure 2.1a

monosaccharide (glucose)

- Examples of small carbs are \qquad
\qquad . These are sources
of \qquad for your cells.

polysaccharide (amylose starch)
- Examples of large carbs are \qquad
\qquad .These are longer energy sources because they are bigger polymers.
- Plants have a special carb called \qquad . This big carb provides
\qquad .
- \qquad is a chemical that indicates if \qquad is present
by turning from \qquad when boiled.
- \qquad indicates if \qquad is present by turning from yellow/orange to blue/black.

Summary:

B. Lipids

- Lipids are made of atoms of \qquad arranged into a monomer called a
\qquad . Lipids have long tails called fatty acids. These can be saturated or unsaturated.

Figure 2.1b
http://4.bp.blogspot.com/5be_mvpJNrA/T385cRz6vzl/AAAAAA

- \qquad fatty acids form kinks and are
\qquad at room temperature like plant oils.
- \qquad fatty acids form NO kinks and
are \qquad at room temperature like animal fats.
- Lipids are important sources of \qquad .

They are also stored by animals and be used as
\qquad .

- The most important type of lipid is a \qquad . Phospholipids have a unique shape that \qquad around the outside of every cell !!!
- The indicator test for lipids is a \qquad
\qquad . The lipids get absorbed and leave a transparent spot.

[^0]
C. Nucleic Acids

- Nucleic acids are made of atoms of \qquad arranged into a 3- part monomer called a \qquad . Nucleotides come in five different types and information is stored based on their sequence/order.

Figure 2.1d

-
(DNA) is a \qquad of
nucleotides that carries \qquad for cells to make their needed molecules like proteins.

- Ribonucleic acid \qquad) is a single strand of nucleotides that performs different jobs to help DNA \qquad -

Summary:

D. Proteins

- Proteins are made of atoms of \qquad arranged into a monomer called an \qquad . Amino acids come in 20 different types and MUST go in the right order to form the right shaped protein. FORM fits FUNCTION.

Figure 2.1e

- A protein's shape is important to the job it performs. There are 6 important jobs.
- \qquad - builds parts like hair, nails, muscle
- \qquad - between cells and animals like the hormone insulin
- \qquad - prevent illness like antibodies

Figure 2.1f

- \qquad - absorbs light like melanin and chlorophyll
- \qquad - molecules like hemoglobin in your blood
- \qquad - speed up chemical reactions like
catalase that breaks down hydrogen peroxide

- \qquad is an indicator of proteins it turns from \qquad
- These four macromolecules are found in EVERY living thing on Earth. Cells make and break down these molecules as part of the cell's regulation and homeostasis needed for survival.

E. Enzymes

- Enzymes are a group of \qquad that allow organisms to regulate internal conditions by speeding up chemical reactions.
- Enzymes \qquad and
have 4 unique properties:

1. Enzymes \qquad (synthesis/digestions) by
bringing substrates together in an optimum (BEST) orientation, thus
\qquad which is needed to start the reaction.

Since enzymes are usually proteins, they are called \qquad .
2. Enzymes have a \qquad that fits with only certain substrates.
3. Enzymes are unchanged during the reaction, so they are \qquad .

Figure 2.1g
$\frac{\text { http://www.biologycorn }}{\text { er.com/resources/enzy }}$

4. Enzymes work at their optimum rate in only some conditions. Changes in \qquad
\qquad can \qquad the enzyme or change its shape.

Figure 2.1h
 on rate of enzymes is highest in the optimum conditions of each unique

 organism (thermal vent bacteria, penguins, cacti). $\qquad$$\qquad$ can cause the enzymes to denature which \qquad .

Organisms and their cells have mechanisms to help minimize changes in temperature, pH and salinity (to maintain homeostasis).
-

- pH is a scale to measure if a solution is an acid or a base. The value of 7 is
\qquad ; below 7 are called \qquad ; above 7 are called \qquad .
- Buffers can respond to changes in pH to help maintain homeostasis to prevent enzymes from becoming denatured.

Figure 2.1j

[^0]: Summary:

